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Abstract. We report the results obtained from simulations of the interacting self-avoiding walk
(ISAW) model on the square and simple cubic lattices. In particular we verify a new scaling
form for the canonical partition function in the low temperature phase as proposed by Owczarek
et al. We also obtain estimates of the critical exponentγ− in two dimensions. Finally, we obtain
good agreement with previous studies on the value of a correction to scaling amplitude at theθ

point on the simple cubic lattice which is in disagreement with a field theoretic prediction.

1. Introduction

The interacting self-avoiding walk (ISAW) model is a model for the collapse transition that
polymers undergo in a dilute solution. In particular it is believed to possess a tricritical
point which has been identified with theθ point in the corresponding polymer problem. This
enables us to estimate universal quantities such as critical exponents for polymers directly
from estimates of those same quantities for the model. The connection between these walk
models and certain quantum field theories is another reason for studying the ISAW model.

The are three types of behaviour exhibited by polymers that are also present in the
model. The self avoidance constraint causes effective excluded volume interactions between
monomers. These compete with the attractive, temperature-dependent interactions that also
exist between monomers. The behaviour of the model is therefore governed by the relative
strengths of these two opposing forces, which are related to the entropy and to the internal
energy respectively. At high temperatures the excluded volume effect dominates and the
walks appear in extended configurations. At lower temperatures the attraction between
monomers dominates and the walks ‘collapse’ into compact globule-like configurations.
There is a critical point separating these two phases where the above opposing forces
‘balance’. This corresponds to theθ point of real polymer systems. The fractal dimension
of walks at this temperature is strictly bounded above and below by the fractal dimensions
of walks in the low and high temperature phases respectively.

Of particular importance are the values of various critical exponents and other universal
quantities which describe the thermal and entropic behaviour of the model both at the critical
point and away from it. Using the enhanced Berretti–Sokal–Metropolis (B–S–M) algorithm
[1], we are able to confirm a new scaling form for the canonical partition function in the
collapsed phase of the model proposed in [2]. We also provide a plot of the free energy of
the model as a function of temperature for the square and simple cubic lattices, as well as
estimates for the critical exponentsν andγ .

† E-mail address: ppn@mundoe.maths.mu.oz.au
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2. The ISAW model

In this section we review some properties of SAWs and ISAWs; we also establish our
notation. LetL be some regulard-dimensional lattice, then ann-step SAW,ψ , on L is a
sequence ofn+ 1 distinct points(ψ(0), ψ(1), . . . , ψ(n)) such that|ψ(i)−ψ(i + 1)| = 1.
We will assume that all walks begin at the origin, i.e.ψ(0) = 0. The vertices of the lattice
are commonly referred to assites. A unit line segment connecting two consecutive points
of the walk,ψ(i) andψ(i + 1), is called abond. A pair of non-consecutive points on the
walk that are nearest neighbours (i.e.|ψ(i) − ψ(j)| = 1, j 6= i ± 1) is called anearest
neighbour contact. We can now define an ISAW by associating an energy,ε, with each
nearest neighbour contact. It is convenient to introduceω to be the temperature parameter†:

ω = eε/kT (1)

whereT is the temperature andk is Boltzmann’s constant. We will always choose units
so thatε/k = 1. Now we letcmn be the number ofn-step ISAWs withm contacts starting
at the origin and ending anywhere. When simulating in the grand canonical ensemble, the
distribution of the walk lengths observed is governed by the canonical partition function,
Zn(ω). This function is a weighted sum over the set of all configurationsψ of fixed length
n as follows:

Zn(ω) =
∑
m>0

cmn ω
m. (2)

The partition function is believed to exhibit two distinct types of asymptotic behaviour
for largen. The first type of behaviour is well known—it is the behaviour of the partition
functions for ordinary SAWs. This asymptotic form of the partition function is believed
to be valid for all temperatures in the high temperature regime of the model and also at
the critical point. The second behaviour has been predicted to occur in the collapsed (or
low temperature) phase of the model [2] where a surface tension term also contributes to
the partition function. Owczarek [3] observed this behaviour in the collapsed phase of
the semi-continuous interacting partially directed self-avoiding walk model. In [2] it was
conjectured that this form of the partition function for low temperatures should also be valid
for the ISAW model and for real polymer systems.

The asymptotic forms for the canonical partition function are as follows:

Zhigh
n (ω) ∼ (µ(ω))nnγ+−1 n → ∞ (3)

Zcrit
n (ω) ∼ (µ(ω))nnγt−1 n → ∞ (4)

Zlow
n (ω) ∼ (µ(ω))nµn

σ

s n
γ−−1 n → ∞ (5)

where the subscripts used forγ indicate the temperature regime.γ+ denotesγ in the
high temperature phase of the model. It is believed to be43

32 in two dimensions [4, 5] and
approximately 1.16 in three dimensions.γt denotesγ at the critical point and is believed
to be 8

7 in two dimensions [6]. It takes on its mean field value of 1 in three dimensions.
Finally, γ− is the value ofγ in the collapsed phase and as far as we know, has never been
estimated. It is not clear whetherγ− should be universal, or even if it is independent of
temperature.

The quantityµ is called the connective constant (or effective coordination number) of
the latticeL for SAWs (ω = 1)—it is lattice dependent. For the ISAW model,µ is related
to the free energy and is temperature dependent as well as lattice dependent. It can also be
thought of as theeffectiveconnective constant of the latticeL at a given temperature.µs is

† For the sake of brevity, we will often refer toω as the temperature even though it is a dimensionless quantity.
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a quantity less than 1 and is related to the surface free energy term in the partition function
that is present at low temperatures. Thus the exponentnσ should have the dimension of a
surface. This suggests thatσ = (d − 1)/d sincen is analogous to a volume. However, it
is not clear whether the self avoidance constraint would lead to a reduction inσ .

We are also interested in studying the asymptotic behaviour of the ‘size’ of walks. This
is governed by another critical exponent,ν. There are several quantities that can be used
to estimateν, but we will only use the mean-squared end-to-end distance:

〈R2
e (n)〉 = 〈(ψ(0)− ψ(n))2〉. (6)

This quantity has the following asymptotic behaviour:

〈R2
e (n)〉 ∼ n2ν asn → ∞ (7)

whereν takes on three different values (ν+, νt andν−) depending on the temperature. In
two dimensionsν+ is believed [4, 5] to be3

4 andνt has been predicted [6] to be47.
It is expected thatd = 3 is the upper critical dimension for tricritical ISAWs. This

implies that the critical exponents of the model should take on their mean field values and
the leading correction terms should be logarithmic. There have been several field theoretic
predictions [7, 8] made about the form of these logarithmic corrections at the critical point.
We check two of these predictions in this paper. The first prediction is for the canonical
partition function at the critical point:

Zn(ωt ) ∼ µnt

(
1 − 49

484 lnn

)
. (8)

The other prediction is for the mean-squared end-to-end distance:

R2
e (ωt ) ∼ n

(
1 − 37

363 lnn

)
. (9)

There are many other quantities that can also be examined for the ISAW model (such as
the specific heat), however most of these are best simulated at fixedn, i.e. in the canonical
ensemble.

3. The algorithm

The B–S algorithm [9] simulates SAWs in a grand canonical ensemble at fixed monomer
fugacity, z, with one endpoint fixed at the origin and the other endpoint free. Eachn-step
walk has a probability ofzn/G(z) of appearing in the ensemble, where

G(z) =
∞∑
n=0

cnz
n (10)

is the grand partition function andcn is the number ofn-step SAWs. The B–S algorithm
is similar to the Redner–Reynolds algorithm [10] and also Grassberger’s algorithm [11, 12]
which are both incomplete enumeration algorithms. Its main advantage over these two
algorithms is that it is a well-defined, dynamic, Markov process, rather than a stochastic
enumeration procedure. This means that the large amount of effort put into understanding the
correlations in the data of other dynamic Monte Carlo algorithms can also be applied to this
algorithm. The situation for the quasi-static algorithms mentioned above is quite different
since the correlations in the data generated by these algorithms are not well understood.
This can result in the underestimation of statistical errors in the data, possibly leading to
erroneous estimates of confidence intervals.
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The simulation of ISAWs with the B–S algorithm is easily achieved by including a
standard Metropolis accept/reject step. This introduces the parameterω defined in section 2
which allows the temperature to be controlled. Thus the grand partition function for the
simulation of ISAWs is

G(z, ω) =
∞∑
n=0

znZn(ω). (11)

When we first implemented the algorithm, we found that it became increasingly inefficient
asω was increased. For values ofω corresponding to the collapsed phase of the model, the
autocorrelation times of our observables were very large. This led us to modify the basic
move of the algorithm in an attempt to lower these autocorrelation times—we achieved a
reasonable reduction for low temperatures (about a factor of 2). Below we briefly present
the details of the B–S–M algorithm along with this new local move; for more specific
details, see [1].

The B–S algorithm consists of two basic moves: appending a bond onto the end of
the walk, or deleting a bond from the end of the walk. These moves have to be chosen
with the correct relative probabilities in order to satisfy detailed balance. To simulate
ISAWs, we add in the standard Metropolis move; we call this the B–S–M algorithm. In
[1] it was shown that adding/deleting awalk of length1n rather than a single bond can
improve the efficiency of the algorithm. Unfortunately the gain in efficiency deteriorates
as the temperature is lowered, especially in two dimensions. We attempted to improve the
efficiency of the algorithm near the critical point by introducing a scheme which varied the
length of the walks to be added/deleted. This scheme was partly successful and we used it
for several temperatures in the two-dimensional simulations.

In order to carry out the simulations, we needed to decide on the average length of
walks that would be simulated and also the temperature values to be simulated. These
two considerations are not independent of each other, so a large number of test runs were
performed at variousω values to tune the fugacityz which controls the lengths of the walks
being simulated. The other quantity which came into consideration when choosing〈n〉 was
the autocorrelation time of the observables.

Some additional caution was required when choosing the parameter values for the low
temperature grand canonical simulations. This is due to the singularity structure of the
generating function,G(z, ω) [13]. The radius of convergence of the generating function
consists of a line of simple singularities at high temperatures which are dominated by an
algebraic singularity. At low temperatures, there is an infinite accumulation of poles at
the radius of convergence which results in a line of essential singularities. Moreover, the
generating function (and hence〈n〉) is finite on the radius of convergence. The line of
algebraic singularities and the line of essential singularities meet at the tricritical point,ωc
(see figure 3 of [13]).

The line of essential singularities in the low temperature phase produced instability in
the simulations. The instability made it difficult to know whether or not we were simulating
in the unphysical regimez > zc. This problem was overcome by performing the simulations
for some value ofz and subsequently estimatingzc from the data. The simulation was taken
to be valid if it was self-consistent, i.e. ifz was found to be less than the estimate ofzc.
This method worked well in two dimensions but the simulations in the low temperature
regime on the simple cubic lattice proved to be rather difficult; this is reflected in the results
we obtained for that lattice.

An additional problem that we experienced for the low temperature simulations was
that only small values of〈n〉 could be simulated. This effect was particularly severe in
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three dimensions, as can be seen in section 5. One way to ‘boost’ the value of〈n〉 for low
temperatures is to simulate in a slightly different ensemble whose generating function is:

Gp(z, ω) =
∞∑
n=0

znnpZn(ω) (12)

where the parameterp is some small integer. The simulation of this ensemble can be
achieved by making the appropriate changes to the transition probabilities of the Markov
chain.

Our main task of verifying the proposed new form of the partition function in the low
temperature phase was achieved by recording the grand canonicaln-distribution generated
by the runs. Our method was to attempt to fit a curve to the observed distribution and to
subsequently test the goodness of this fit by using aχ2 test. The mean squared end-to-end
distance was also collected canonically and this allowed us to estimate the exponentν.

4. Results: two dimensions

We carried out simulations at 18 different temperatures, five of which were in the effective
low temperature regime. Since our simulations were carried out for rather small values of
n, we needed a criterion to determine the effective temperature regime in which we were
simulating. The low temperature regime was taken to be the range ofω values where the
effective exponentν was found to be less than 0.5. All of the high temperature simulations,
including those at the effective critical point, used〈n〉 ≈ 300. The sample sizes ranged from
1× 106 to 3.7× 107 independent configurations for the simulations in the high temperature
regime and at the critical point. The values for〈n〉 used in the low temperature regime
ranged from 200 atω = 2.0 to 100 atω = 2.2. The larger autocorrelation times for
observables in the collapsed phase meant that our sample sizes were limited to 1× 106

independent configurations.

Table 1. Parameters values for simulations in two dimensions.

ω z 〈n〉 1n Scheme Sample size τint,n

1.0 0.3773 300 14 M 3.7 × 107 2600
1.1 0.3713 300 14 M 1× 107 4500
1.2 0.365 300 14 M 1× 107 4800
1.3 0.358 32 300 14 M 1× 107 6500
1.4 0.3514 300 14 M 6× 106 8500
1.5 0.344 28 300 10 M 5× 106 17 000
1.6 0.336 92 300 8 M 4.1 × 106 28 000
1.7 0.329 33 300 8 Q 2× 106 45 000
1.8 0.321 22 300 8 L 2× 106 150 000
1.9 0.312 84 300 5 L 1× 106 140 000
1.94 0.3094 300 5 L 1.5 × 106 140 000
1.945 0.309 02 300 5 L 3.6 × 106 220 000
1.95 0.308 55 300 6 L 1× 106 220 000
2.0 0.3036 200 4 M 1× 106 165 000
2.05 0.2993 200 3 M 1× 106 340 000
2.1 0.2945 150 3 M 1× 106 280 000
2.15 0.2895 100 3 M 8.8 × 105 240 000
2.2 0.2852 100 4 L 1.05× 106 320 000
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Table 1 showsω for each simulation, the value of the fugacity,z, which was chosen
for each temperature and the corresponding average length of walks that were simulated at
each temperature. An M in the scheme column means that1n was fixed in the simulation
at the value displayed in the1n column. An L or Q in the scheme column means that
1n was allowed to vary for each Monte Carlo step. This was achieved by choosing the
maximum possible value of1n allowed, call itk (this is the number in the1n column).
A weight was then prescribed for all walk lengths up tok and for each Monte Carlo step, a
walk length was randomly chosen according to the weights. For the L scheme, the weights
wi were

wi = i∑k
j=1 j

(13)

while for the Q scheme they were

wi = i2∑k
j=1 j

2
. (14)

The last column in table 1 shows an estimate of the integrated autocorrelation time,τint,n,
for the observablen. This quantity is defined as the area under the autocorrelation function,
Cnn(s). We used the procedure suggested in appendix C of [14] to obtain the estimates
presented in table 1.

4.1. Estimatingµ, γ andµs

The B–S–M algorithm generates a correlated sequence of ISAWs in the grand canonical
ensemble at fixed monomer fugacityz and temperatureω. Each ISAW appears in this
sequence with probabilityznωm/G(z, ω) whereG(z, ω) is the grand partition function
given in (11).

A more practical quantity to consider is the probability ofany walk of lengthn appearing
in the sample (i.e. the distribution of the walk lengths generated by the algorithm in the
grand canonical ensemble) which is given byznZn(ω)/G(z, ω). This is useful because we
can use (3), (4) or (5) to approximateZn(ω). Sincez andω are constant in our simulations,
G(z, ω) will also be constant so we do not have to estimate the form of the grand partition
function. The distribution of the walk lengths can be directly collected from the run by
producing a histogram forn.

We can estimateµ, γ andµs by assuming the histograms are given exactly by either

Hz,ω(n) = A(µz)nnγ−1 (15)

for simulations in the high temperature phase and at the critical point, or

Hz,ω(n) = A(µz)nµn
σ

s n
γ−1 (16)

for simulations in the low temperature phase. Of course (15) and (16) only describe the
leading asymptotic behaviour forHz,ω(n). We followed the procedure described in [9] to
deal with correction to scaling terms. For ISAWs at high temperatures we used the following
form:

Hz,ω(n) = A(µz)n(n+ k)γ−1 (17)

wherek is some small fixed number.
In order to obtain estimates forµ andγ in the high temperature phase and at the critical

point, we introduce a cut-off parameter,nmin. The curve fitting was then performed for a
range ofk andnmin values. The best estimates were considered to be those that satisfied
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the flatness criterion, i.e. where the dependence of the estimates onnmin were the weakest.
In general there was a range ofk values that yielded reasonably flat curves forµ and γ .
We will refer to the range of values forµ andγ which satisfied the flatness criterion as the
systematic error. The statistical error on the other hand was provided by the fitting method
that was used. We used two fitting methods—the maximum likelihood procedure that is
outlined in [9] and also nonlinear regression.

The procedure we used for estimatingµ, γ andµs in the low temperature phase was
somewhat different to that used for the high temperature phase. First we assumed thatσ

took the value of(d − 1)/d, whered is the lattice dimension. If we did not do this, we
would have had to perform a five-parameter fit which would have led to unacceptably large
error bars—especially forσ and γ . We did not estimate the systematic error in the low
temperature phase because the statistical error was at least several times larger.

4.2. Verifying new scaling form

We used theχ2 test to determine the goodness of the fit of (16) to the actual histograms
produced by the simulations. We first calculated theχ2 value of the fit:

χ2 =
M∑

n=nmin

(Hz,ω(n)−Oz,ω(n))
2

Hz,ω(n)
(18)

whereOz,ω(n) are the observed values of the histograms andM is the maximum number of
data points. Since(M − nmin) � 30, we can approximate theχ2 distribution by a normal
distribution with unit variance and a mean of

√
2χ2 −√

2p − 1, wherep = (M−nmin)− 4
is the number of degrees of freedom. We use this distribution to determine thesignificance
level, which is the probability thatχ2 would exceed the value calculated in (18). A small
significance level of less than, say 5%, would indicate a problem with the fit, although it
would not necessarily rule out the fitting function.

4.3. Estimatingν

We chose to estimateν from our simulations by analysing our data canonically, i.e. we
estimated〈R2

e (n)〉 by averaging the observableR2
e at fixedn. We then performed a weighted

least squares fit by assuming that

〈R2
e 〉 = A(n+ k)2ν (19)

was exact for alln > nmin, wherek is some small fixed number. Another assumption in
using (19) is that the exponent of the leading correction term is at most−1 (this is not
believed to be true for three dimensional SAWs). We used the flatness criterion mentioned
previously to determine our best estimate ofν. The range of values ofν for those curves
that satisfied the flatness criterion was taken as an estimate of the systematic error.

4.4. Numerical results

In all of the estimates stated in this paper, we will adopt the following convention.
• All of the statistical errors stated will be 95% confidence intervals, i.e. 2 standard

deviations.
• If two error bars are given for an estimate, then the format is: central estimate±

statistical error± systematic error.
• If one error bar is given, then the format is: central estimate± statistical error.
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Figure 1. µ againstω for the square lattice.

Figure 1 shows the plot ofµ(ω) for the square lattice. The error bars for the estimates
of µ are smaller than the symbols used on the graph. We performed two estimates forµ at
ω = 1 (i.e. for SAWs)—assuming thatγ = 43

32 gives:

µSAW = 2.638 154± 0.000 010± 0.000 007 (20)

whilst with γ as a free parameter we find that:

µSAW = 2.638 164± 0.000 004± 0.000 010. (21)

Both of these results are consistent with recent enumeration data [15], however the central
estimate of the fit that assumedγ = 43

32 was closer to the estimate forµ obtained via
enumeration.

Tables 2 and 3 show our estimates forγ andν. The caseω = 1 corresponds to the SAW
model and we obtain excellent agreement with the conjectured values of bothγ+ andν+.
Note that the systematic error in the estimate ofγ+ is actually larger than the corresponding
statistical error.

We indirectly estimated the critical point,ωt , in two ways. We assumed thatωt occurs
when γ and ν take on their predicted values of8

7 and 4
7 respectively. A simple linear

interpolation of the data from table 2 yields a central value of 1.943 forωt . A similar fit
to the data in table 3 yieldsωt = 1.946. Both of these results are in excellent agreement

Table 2. γ in two dimensions for all three temperature regimes.

ω Regime γ

1.0 γ+ 1.3414± 0.0011± 0.0015

1.94 1.157± 0.010± 0.007
1.945 γt 1.132± 0.005± 0.004
1.95 1.106± 0.009± 0.005

2.0 1.06± 0.03
2.05 1.11± 0.03
2.10 γ− 1.07± 0.04
2.15 1.09± 0.08
2.20 1.11± 0.06
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Table 3. ν in two dimensions for SAWs and at the critical point.

ω Regime ν

1.0 ν+ 0.7499± 0.0003± 0.0002

1.94 0.5797± 0.0028± 0.0017
1.945 νt 0.5727± 0.0011± 0.0007
1.95 0.5667± 0.0026± 0.0019

with the results of [11] (they getωt = 1.944± 0.004) and are consistent with each other.
We use these estimates ofωt to estimateµt :

µt = 3.224± 0.004. (22)

The relatively large error in this estimate is mainly due to the uncertainty of the critical
point.

The lower half of table 2 contains estimates ofγ in the collapsed phase of the model
with 95% confidence intervals. Despite the large error bars, the fluctuations of the estimates
for γ as a function ofnmin were surprisingly small. We observed oscillatory behaviour for
γ in the low temperature phase up tonmin ≈ 35. This suggests that using enumeration data
to estimateγ− would be very difficult to analyse as the oscillations were quite large. We
suspect that the low estimate forγ at ω = 2.0 may be a crossover effect so we excluded
it from our final calculation ofγ−. The large error bar obtained forω = 2.15 was due to
unusually large oscillations for small values ofnmin. As a result, we had to throw away
more data than usual for our estimate ofγ at this temperature.

From the data presented in table 2, it is not clear whether or notγ− is dependent on
temperature. We would have to perform much larger simulations at lower temperatures to
confirm or refute this. However, there does not appear to be a trend in the central estimates.
Thus it is possible that the variations are due to purely statistical errors in which case we
can estimateγ− by averaging these estimates. We performed a weighted average of the
data points, apart fromω = 2.0, and our estimate forγ− is:

γ− = 1.095± 0.045. (23)

The inclusion ofω = 2.0 in the average, results in a slightly smaller central estimate:
γ− = 1.085± 0.04.

We now check the validity of the proposed new form (5) for the canonical partition
function in the low temperature phase. All of the tests that we carried out assumedσ = 1

2

in two dimensions andσ = 2
3 in three dimensions. Table 4 shows the results of theχ2

Table 4. χ2 and significance levels of the curve fitting for the partition function at low
temperatures in two dimensions.

Degrees of
ω nmin freedom χ2 Level

2.0 44 509 526.0 29%
2.05 60 847 812.4 79%
2.10 66 669 688.8 28%
2.15 57 500 498.2 51%
2.20 119 828 866.2 17%
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Table 5. µs as a function ofω in two dimensions.

ω µs

2.0 0.978± 0.014
2.05 0.925± 0.007
2.10 0.893± 0.016
2.15 0.83± 0.022
2.20 0.80± 0.013

tests that we performed for eachω. We argue that these tests taken together demonstrate
convincingly the validity of (5), at least ford = 2. We found that large contributions were
made toχ2 for very small and very large values ofn. The large residuals observed for
smalln values were due to correction to scaling terms. We dealt with these by introducing
a cut-off parameter,nmin, as can be seen in (18). The large contributions toχ2 from the
tail of the distribution, where the statistics are poor, were also cut off by reducingM. We
attribute the small significance level atω = 2.2 to poor statistics. Since the average length
of the walks generated by the algorithm at this temperature was smaller, a greater proportion
of the data was lost to reduce the effects of correction terms. We did, however, plot the
residuals forω = 2.2 and could find no significant trends.

Table 5 shows the estimates ofµs that were obtained from the curve fitting. These
estimates are encouraging since, as expected, they decrease steadily with increasingω. We
also estimatedµs at ω = 1.95—just below the critical point and we found it to be 1 within
error bars. The behaviour ofµs close to the critical point has been conjectured [13] to be
characterized by the critical exponent,χ (not to be confused withχ2 of (18)):

|1 − µs | ∼ |ω − ωt |χ asω → ωt (24)

where it is believed thatχ = σ/φ = 7
6 in two dimensions. Our estimates forµs are too

crude to attempt to verify this relation—it may also be necessary to perform simulations
much closer to the critical point to estimateχ .

5. Results: three dimensions

The simulations in three dimensions were performed at 12 different temperatures with four of
these in the low temperature phase. All of the high temperature simulations were performed
at 〈n〉 ≈ 300. The sample sizes ranged from 5× 106 to 1 × 107 independent samples in
the high temperature phase and at the critical point. The simulations in the low temperature
phase were performed from〈n〉 = 300 atω = 1.325 to〈n〉 = 80 atω = 1.375. The sample
sizes in the low temperature phase ranged from 5× 106 to 4× 107 independent samples.
It was not possible to simulate at lower temperatures or at larger〈n〉 due to the instability
that was described in section 3. The parameter values that were chosen for the runs on the
simple cubic lattice are displayed in table 6.

We used the procedure described in section 4.1 to obtain estimates forµ, γ andµs .
However, sinced = 3 is the upper critical dimension for tricritical ISAWs, we had to insert
a logarithmic correction term for the behaviour of the histograms, i.e. we modified (17) to

Hz,ω(n) = A(µz)nnγ−1

(
1 + D

ln n

)
(25)
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Table 6. Parameter values for simulations in three dimensions.

ω z 〈n〉 1n Scheme Sample size τint,n

1.0 0.212 68 300 9 M 1× 107 5500
1.05 0.2105 300 9 M 5× 106 4900
1.1 0.208 25 300 9 M 1× 107 5800
1.15 0.2059 300 9 M 5× 106 5700
1.2 0.203 44 300 9 M 1× 107 7600
1.25 0.2008 300 9 M 5× 106 8000
1.3 0.197 97 300 9 M 5× 106 16 000
1.31 0.197 37 300 9 M 5× 106 17 000
1.325 0.196 44 300 9 M 5× 106 26 300
1.35 0.194 53 200 8 M 5× 106 17 800
1.365 0.193 120 8 M 1× 107 14 000
1.375 0.1917 80 5 M 4× 107 5300

for ω = ωt . A similar correction term was used for the estimation ofνt :

〈R2
e (n)〉 = An2νt

(
1 + E

ln n

)
. (26)

For ordinary SAWs in three dimensions, there is evidence from simulations and from
renormalization group arguments [17] that the exponent of the leading correction term
is −0.5. Thus we we also modified (19) to estimateν+:

〈R2
e (n)〉 = An2ν+

(
1 + F

n0.5

)
. (27)

5.1. Numerical results

Figure 2 showsµ(ω) for the simple cubic lattice. Our estimate for the connective constant
for the simple cubic lattice is:

µSAW = 4.684 07± 0.000 04± 0.000 02. (28)

Figure 2. µ againstω for the simple cubic lattice.
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Table 7. γ in three dimensions for all three temperature regimes.

ω Regime γ

1.0 γ+ 1.1581± 0.0025± 0.0033

1.31 γt 0.9985± 0.0035± 0.0033

1.325 0.997± 0.018
1.35 1.036± 0.025
1.365 γ− 1.08± 0.05
1.375 1.14± 0.12

This estimate is larger than the value obtained in [16], although there is some overlap in
the error bars. We also performed one simulation atω = 1.31 which should be close to the
critical point where we find

µ(ω = 1.31) = 5.050 02± 0.000 05± 0.000 03 (29)

which is in good agreement with that of [12].
Table 7 contains our estimates forγ for all three temperature regimes. Our value for

γ+ is significantly smaller than the value stated in [16], although the error bars do overlap.
Note that the systematic error is larger than the statistical error. The estimate forγ at
ω = 1.31 is essentially 1 within error bars, which is the mean field value ofγ . This result
supports the estimate ofωt in [12] (i.e. ωt = 1.3083± 0.0006). Note that we also obtain
γ = 1 within error bars atω = 1.325; however, at this value ofω, µs < 1 (see table 9)
which suggests that this is not the critical point.

The use of (25) in determiningµ and γ around the critical point also enabled us to
check (8). If (8) is indeed true, then we would expect the flatness criterion to be valid for
D ≈ −49/484 ≈ −0.101. The values ofD in our analysis which produced curves that
satisfied the flatness criterion atω = 1.31 were−0.17±0.07. The field theoretic prediction
lies inside our error bars, so it cannot be ruled out. Our result forD is in reasonable
agreement with Grassberger and Hegger’s result (hereD is given by the slope of the curve
corresponding toω = 1.31 in figure 21 of [12], which we estimate to be approximately
−0.22).

The lower section of table 7 contains our estimates forγ in the collapsed phase of the
model. The data suggests thatγ− > 1, but that is just about all that we can conclude from
it. Much larger simulations at lower temperatures would be necessary to determine the true
behaviour ofγ−.

We performed a weighted least squares fit of〈R2
e 〉 againstn using (27). This resulted

in

ν+ = 0.5882± 0.0007± 0.0010 (30)

which is in good agreement with the result of [17]. When estimatingνt around the critical
point we used the logarithmic correction term of (26). This yielded

νt = 0.5001± 0.0012± 0.0019 (31)

which is in excellent agreement with the expected mean field value of 0.5. Fitting (26) to the
squared end-to-end distance data also enabled us to check the field theoretic prediction given
in (9). Grassberger and Hegger’s simulations completely ruled out this prediction since the
slope of the curve in figure 18 of [12] is approximately−0.73. We obtainE = −0.66±0.06
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Table 8. χ2 and significance levels of the curve fitting for the partition function at low
temperatures in three dimensions.

Degrees of
ω nmin freedom χ2 Level

1.325 216 413 465.0 4%
1.35 126 378 409.4 13%
1.365 112 155 180.4 8%
1.375 85 174 188.0 22%

Table 9. µs as a function ofω in three dimensions.

ω µs

1.325 0.996± 0.002
1.35 0.978± 0.003
1.365 0.962± 0.006
1.375 0.946± 0.012

from our simulations which is in reasonable agreement with Grassberger and Hegger’s result
and hence in complete disagreement with the field theoretic prediction.

Table 8 shows the results of theχ2 tests we performed for the curve fits. All of the
results produced small significance levels; however, we found that a lot of the contribution
to χ2 came from the tail of the distribution except forω = 1.325. We believe that the poor
results that we obtain for the fit of the histograms atω = 1.325 to (16) are probably due
to a logarithmic correction term since this point is close to the critical point. A plot of the
residuals forω = 1.325 show no apparent trends forn up to 3000. We also performed plots
of the residuals for the other temperatures and found that they were small and randomly
fluctuating around zero forn up to about 1000. Forn > 1000, the residuals became large
as the statistics in that regime were poor. There was a small upward trend in the residuals
for largen at ω = 1.365 andω = 1.375 which indicates that the curve fit underestimated
the histograms in the tail of the distribution.

Our estimates forµs are given in table 9. We find once more thatµs decreases steadily
for increasingω. We also calculatedµs closer to the critical point atω = 1.31 and as in
two dimensions, we obtained a result very close to 1. The value of the exponentχ in three
dimensions is expected to beσ/φ = 4

3, but once again our data is too noisy to attempt to
verify this.

6. Conclusion

We simulated the ISAW model using the B–S–M algorithm on the square and simple cubic
lattices. Our results confirm the validity of a new scaling form for the canonical partition
function in the low temperature phase of the model ind = 2. The results ford = 3 were
not as convincing since we could not simulate sufficiently long walks in the low temperature
phase using the grand canonical ensemble. To simulate longer walks, a slightly different
ensemble would have to be used, such as the one associated with (12). Our simulations also
allowed us to estimateγ− for both lattices. It is not clear from the data whether or notγ− is
dependent on temperature. However, our data suggests thatγ− > 1 for the ISAW model on
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the square and simple cubic lattices. As a consistency check, we have also estimated other
quantities that have been examined in previous studies and have obtained good agreement
with them. In particular, we found that our estimate of the correction to scaling amplitude
of the end-to-end distance at theθ point on the simple cubic lattice was in disagreement
with a prediction from field theory.
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